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It is proven that the Prigogine-Misra-Courbage (PMC) processes associated to 
the (�89 �89 shift are Bernoulli shifts. The Bernoulli partitions are con- 
structed explicitly by using the decomposition of the transition kernels of the 
PMC processes on the fibers of the stable manifold of the transformed point 
(the generating property of these partitions is proved for any two-symbol 
Bernoulli shifts). 

KEY WORDS: Markov processes; Bernoulli shifts; stable manifold; strong 
convergence to equilibrium; Nelson measure. 

1. I N T R O D U C T I O N  

Let (X, ~,/~, T) be a Kolmogorov shift. The Prigogine-Misra-Courbage 
(PMC) processes associated to this dynamical system are Markov 
processes V(T) depending on T, which preserve/~, and satisfy the following 
relevant properties (1 3): 

(a) They converge strongly to equilibrium, that is, 

V(T) 2~ f 

for a n y f ~  L2(#). 
(b) Their evolutions commute with the evolution of the dynamical 

system on the space of densities by means of a nonunitary 
operator A. 

(c) There is no loss of information, in the sense that A is invertible in 
a dense subset of densities. 
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In this work we study the ergodic theoretical characterization of the 
PMC processes V(T), that is, the properties of the induced dynamical 
systems (X z, ~z, #v(r), _T) where T is the shift action on the space of 
double sequences X z and #v(r) is the Nelson probability measure (t2'13) 
induced by V(T) and # on (X z, Y3z). Our main result is the following: 
when (X, N, #, T) is the (�89 �89 shift, the associated PMC processes 
(X z, ~z ,  #v(r), _T) are Bernoulli. We also construct explicit #v(r~-Bernoulli 
partitions. 

In the proof of this result we use the decomposition of the transition 
kernel Q v(r) on the fibers (X2-(Tx): k s Z w { -  oe }) of the stable manifold 
X+(Tx) of Tx. (4'5) We introduce all these previous results in Section 2. 
They allow us to construct #v-Bernoulli partitions. The generating 
property of these partitions is proved in Lemma 1 of Section 3 for any 
(p, 1-p)-Bernoul l i  shifts ( 0 < p <  1) and the independent property is 
shown in Lemma 2. 

We remark that the method introduced in Refs. 13 and 14, which 
allows us to prove that some Markov processes preserving # are Bernoulli, 
does not apply to our case. In fact, it is easy to show that in the (�89 �89 
Bernoulli shift case we have 

sup IV(T)k f - f f d#]= l 
I f l  ~< 1 

for any k~> 1 [where the sup is taken over the Ll(#) lattice-], while the 
condition supposed in Ref. 13 is the convergence of the previous quantity 
to 0 when k increases to infinity. 

Our result can be analyzed by means of formula (7) of Section 2. A 
PMC process consists in choosing [with a probability distribution that for 
the (�89 �89 shift does not depend on the point-] some integer m 
such that the future code of the deterministic evolution is preserved for 
n > m, the past code is selected at random for n < m, and for n = m we take 
a different state. In the #v(r)-Bernoulli partition given by (9) we stack at 
time 0 the coordinate mo at which the deterministic evolution changes and 
the past of the orbit (x(n): n ~< mo), which will be lost in the evolution of 
the PMC process V(T). 

2. D E S C R I P T I O N  OF THE P M C  PROCESSES 

2.1. The Canonical  P M C  Process 

Let T be a #-automorphism of the Lebesgue probability measure space 
(X, N', #), that is, T is a N-measurable bijection on X that preserves #. It is 
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a Kolmogorov automorphism if there exists a #-complete a-field 6o c 
such that the sequence (c~n= T"e0)n~z is increasing and exact, the last 
term meaning that (z~)n~z is generating: e ~  = ~ ( m o d # ) ,  and 

~=JV ' (mod#)  [where z~+o~=limn~+~ ~, ,  JV" is the trivial o-field, 
and a relation (mad #) means that the relation is verified up to #-null 
measure sets]. It is a Bernoulli automorphism if there exists a #-complete 
a-field ~ such that the sequence of o-fields ( ~  = T~J%),,~z is #-indepen- 
dent and generating [that is, the o-field generated by the (-Y,,,),,~z satisfies 
~/,~ z ~  = ~'(mod #)]. Any Bernoulli automorphism is Kolmogorov./7) 

A #-automorphism T induces an operator UT on LZ(,tt), UTf=fo T, 
which is unitary (U*=  U~ 1) and #-Markov: UT1 = 1 = U*I, Uvf>~O if 
f~> 0 (see Ref. 8). Reciprocally, any unitary #-Markov operator induces a 
#-automorphism on (X, ~,  #).ts) We have [I U*"fll = Ilfll for any f ~  L2(#). 
Then any nontrivial #-automorphism does not satisfy the condition of 
strong convergence to equilibrium: 

U * . r • f f d #  for fcL2(#) 
T J n ~ o ~  

Recently in Ref. 1, and in a more general way in Refs. 2 and 3, there 
has been associated to a Kolmogorov ,u-automorphism T a class of 
operators V= V(T) satisfing 

VI=  1 = V*I, Vf>~O if f>~0 (#-Markovproperty) (la) 

V * n f ~  f f d #  for any f ~  L2(#) 

(strong convergence to equilibrium) (lb) 

there exists a #-Markov operator A such that: (lc) 

V*A = A U* (commutativity relation) (ld) 

A 1 is densely defined in L2(#) 

(no loss of information) (le) 

For physical discussions of these conditions see Ref. 1. 
It is important to remark that any #-Markov operator V induces a 

transition kernel Qv on (X,~) ,  defined #-a.e. by the formula 
Q v(x, B)=  V1B(mod #) and which preserves #.~1o) Reciprocally, any trans- 
ition probability kernel Q preserving # induces a /~-Markov operator 
V 0 on L2(tt) by (Vof)(x)=~f(x) Q(x, dx') tt-a.e. It is easy to see that 
any #-Markov operator V preserves the space of densities 

822/47/3-4-16 
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~(#)  = {f>~ 0, S f d# = 1 } and that its adjoint V*, which is also g-Markov, 
is the evolution operator in 9(#).  This is why conditions (lb) and (ld) are 
established in terms of the adjoint operators. 

Now, for Kolmogorov automorphisms, we shall describe briefly the 
canonical construction of #-Markov operators V and A that satisfy con- 
ditions (la) (le). Let v = (vn),~z~ { ~  be a probability vector on Z u  {oo } 
satisfying the following assumptions(6~: 

v~ < 1 (2a) 

v~ va 0 or there exists a subsequence 

n~ 7 oo such that vnk ~ 0 (2b) 

nv, > -oo  (2c) 
n~<0 

Then it is easy to show that 

k < n  m < k  k < n +  1 k 

is strictly positive for every n e Z  and 2 =  ()~n)~z is a probability vector 
over Z. Let z~, = T% o (where ~o satisfies the Kolmogorov property for T). 
The mean expected value operator E ~'" is #-Markov. Now it can be 
proved(1 5) that the Markov operators defined in L2(#) by 

V = (  ~, v,E~")Ur (3a) 
~ezu{ oo}  

A = ~ ,~,E ~'~ (3b) 
n ~ Z  

satisfy conditions (la) (le) (we have written v,, 2~ instead of ~,, ,~,, as is 
done in Refs. 1-3). In this construction A is self-adjoint, and it depends on 
T. For any nonconstant f e L 2 ( # )  the sequence P f  does not converge to 
~fd# in the L2(#) norm; then we can distinguish V from V* by means of 
the conditions of strong convergence to equilibrium. As the operator V 
gives the time-reversed evolution of V* (see Ref. 12), the symmetry in time 
evolution has been broken. 

2.2. Descript ion of  the Probabi l i ty  Kernel of  the P M C  
Processes 

Now we only consider ergodic automorphisms of finite entropy. So, up 
to isomorphism, ~ we shall only deal with ergodic shifts constructed over 
some finite alphabet A. Then 

X = A Z = { x = ( x ( i ) e A : i ~ Z } ,  N = (r z 
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where N(A) is the discrete field on A, (Tx)(i)=x(i+ 1), ViEZ, is the shift 
transformation, and /~ is a T-invariant probability measure. Let 
Xa={xr and consider the zeroth coordinate partition 
c~0= {X,: a~A} and the past a-field 

~0= V T-'~0 
n ~ > 0  

where ct o is the field generated by ~o. Then 

T 'ao  --" ~ ( m o d # )  

and T is a g-Kolmogorov automorphism iff 

T - ' ~  o "~ ~V(mod/~) 
n ~ o o  

In this last case it has been proved (5) that the probability kernel Qv 
induced by the Markov operator 

V= ~z~{o~} 

satisfies 

where 

Qv(x, X+(Tx))= 1 (4a) 

Qv(x, {Tx})>~v~ (46) 

X + (y) = {z 6 X: 3j e Z such that z(i) = y(i), Vi >~ j} 

is the stable manifold of y e X. [If  we introduce the distance 

(5) 

d(x, y)= ~ 2 I"ld,(x(n), y(n)) 
; - I ~ Z  

on X, where ds(a, a') = 1 if a r a' and 0 if otherwise, we can define the 
stable manifold of y as 

X+(y) = {z~x: d(~z, T'y) . ~ ,  0} 

see Ref. 9. 
A more precise result is obtained in the Bernoulli case. Up to 

isomorphism, we can always assume that the sequence ( T ~ o ) , ~ z  is g- 
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independent ,  so # is the p roduc t  measure  # = #A z,  where #A = (#(X,) :  a �9 A) 
is a probabi l i ty  vector  on A. We suppose # ( X ~ ) > 0  V a � 9  The shift T 
defined in (A z, (P(A)) z, #ZA) is called a #A-Bernoulli  shift. 

Fo r  x �9 X and - oo ~< i' ~< i" ~< oo we define the block 

and the cylinder 

x( i, i') = (x( i): i' <~ t ..~ t , i �9 Z) 

[x(i', i")]  = { y �9 X: y(i', i")= x(i', i")} 

The set of finite cylinders (i', i " � 9  denoted by ~ is a semialgebra  
generat ing ~.~9) We write #i(x)  = #[x(i, i)];  then for Bernoulli  measures  we 
get 

i" 

#[x(i', i")]  = 17 #i(x) 
i--i' 

N o w  define 

"c(x, y ) = i n f { i � 9  1, o o ) =  y ( i +  1, oo)} (6) 

Then  y � 9  iff r(x,  y ) <  oo, y = x  iff r(x,  y ) =  - o o ,  and if v(x, y ) � 9  
we have x('r(x, y ) ) ~  y('c(x, y)). 

Note  X ~ ( x ) = { y : ' c ( x , y ) = k } ;  then we can par t i t ion the stable 
manifold as follows: 

X+(x) = ~ X#(x) 
k E Z u  [ ~c} 

[No te  that  X + ~ ( x ) =  {x}] .  N o w  for Bernoulli  measures  we have obta ined  
in Ref. 5 the following supp lementa ry  propert ies  of the kernel Q v defined 

by V=(S~,,~z~{~} v,,E ~'~ UT: 

Q v ( x , X ~ ( T x ) ) = [ # k + I ( X )  ' - - 1 3  

Qv(x, { r x } ) = v ~  

V r # k + l ( X ) ' ' ' # r  I ( X ) ( 7 a )  
r=k+2 

(7b) 

We can also describe Qv(x, cr~ X~(Tx) )  for the cylinders C � 9  4. Take  
i' ~< i" ~ k; note  C = [y(i', i")] .  In case i" = k we will suppose  y(k) ~ Tx(k). 
We have 

Qv(x, [y(i', i")]  n X+(Tx))  

= # ( [ y ( i ' ,  i")]  Qv(x, x ~  (Tx) ) [1  - #~+ l(X)] - -1  (7c) 
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This is the characterization of the probability kernel Q v that will allow us 
to study the global behaviour of V on the Nelson probability measure 
space. We must remark that formulas (4a), (4b), and (7a)-(7c) are deduced 
with no restriction on the coefficients of the probability vector 
(v , ) ,~z~o~ ~. Then conditions (2a)-(2c) will not be necessary in the 
theorem of the following section. 

3. THE P M C  PROCESSES ARE BERNOULLI  

Let V be a #-Markov operator, where (X, 2~,#) is a Lebesgue 
probability space. Let us consider the double sequence space 
X z =  {_x=(_x'),~z:_X'eX, V t e Z }  endowed with the product a-field ~z .  
For a finite sequence of N-sets [B(t): r ~< t ~< s], we call 
_B(r, s) = {_x ~ XZ: _x' ~ B(t) for r ~< t ~ s} a cylinder in X z. The class of cylin- 
ders, which we denote ~, is a semialgebra generating N 'z. Define the 
following (Nelson) probability measure on (X z , .~z )  (see Refs. 12 and 
13]): 

t~v(-B(r,s))=fl~(r)V(le(r+~lV('"(18(, 1) V18(,1)' ' ')) d# (8a) 

The probability measure space (X z, .~,z, #v) is a Lebesgue one when 
we complete it. If Q v is the probability kernel induced by V, we can write 
(8a) as 

~dB(r,  s)) 

r + l  s 

Now the shift transformation T on Xz: ( T x ) ' - - x  t§ 1, preserves try, so 
T is a #v-automorphism and it describes the global behavior of the ~- 
Markov operator V. Now for V defined by (3.1) we obtain [with no 
restriction on the coefficients of the probability vector (v,) , ,~z~l~} ] the 
following result: 

Theorem. Let T be the (�89189 shift, an=~/m>~nT-m~o 
(where c~ 0 is the zeroth coordinate partition of AZ), ( v , ) , ~ z , ~ }  a 
probability vector on Z w { oe }, and V = (~n ~ z,~ {o~ ~ vn E ~") Ur. Then the 
shift _T is a Bernoulli #v-automorphism on (AZ) z. 

ProoL If vo~ = 1, we have V= Ur and the result is obvious, so we 
assume v~ < 1. 

From (4a) (which only needs the Kolmogorov property), we deduce 
that P v is supported by the set 2(= {_x E XZ: x '+ l e X + (Tx'), Vt e Z}, that 
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is, #v(_X)= 1. Let us denote by ~_=Nztx the restricted a-field completed 
by try. 

For any (m, y) ~ F =  ( Z u  { - oo }) x A z we define [recall (6)] 

Y(m, y)= {_x6_X:r(Tx~176 m)= y(--o% m)} (9a) 

[note that y ( -  oo, - o o )  is void; then Y ( -  oo, y ) =  {xeX:_xl = T_x~ 
Now the class of sets 

~f~ = {Y(m, y): (m, y ) e  F} (9b) 

defines a partition on _X, then a tt v-partition on X z. 
Now we shall prove that ~ is #v-measurable (see Ref. 11). Then the 

class of sets 

~ = {  U Y(m,y)e~_(mod#v):F'cF} (10) 
(m, v ) E F '  

will be a fry-complete a-field. (Ill 
We must show that there exists a countable class of sets ~ belonging to 

such that for any Yr  Y' in J f  there exists E e ~  such that ( Y c E  and 
Y'c_~E) or (Yc_X~E and Y'cE).  For m e Z w { - o o } ,  q e N w { - 1 } ,  
and y(m - q, q) E A q+ 1 define 

E(m, q, y (m-q ,  q))=  {x~_X: r(T_x ~ x 1) =m,  x~ m ) =  y(m-q ,  m)} 

[The choice of q = - 1  implies y(m + 1, m) is void; then the second equality 
is always verified for any _x ~ If m = - ~ ,  we take q = - 1 . ]  The class of 
all these sets ( = { E ( m , q , y ( m - q , q ) ) : m ~ Z u { - o o } ,  q 6 N w { - 1 } ,  
y ( m -  q, q)~ A q+~ } is countable, it is contained in J~, and it satisfies the 
above properties for couples Yr  Y' in ~ .  Then J f  is #v-measurable. 

Our theorem will be deduced from the following two lemmas (in the 
first one we only need T to be a two-symbol Bernoulli shift). 

Lemma 1. Let  T be  a (p,  1 - p)-Bernoulli shift (0 < p < 1). Then 
is generating in (_X, _~,/~v, _T): Vr~z_T t ~  = _N(mod/~v). 

Proof Let s'~< s" in Z, and for any s'~< s ~< s" take a finite cylinder 
. . . .  -<'" Now C={x6_X:xSE[zs(i's,i")], [zs(ls, i")] in A z, where ts-.~ls. 

s'~< s ~< s"} is a cylinder in (AZ) z and the class of them generates ~z .  Since 

s" i'~ 

C= (~ (~ {x~_X:x'(i)=z~U)} 
s=s"  i--i~ 
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the assertion of the lemma will be established when we show 

{ _ x e _ X : _ x S ( i ) = a } E V _ T - t ~ ( m o d # ) f o r a n y  s, i e Z ,  a e A  (11) 
t ~ Z  

Let us fix s, i e Z  and a e A  and call C =  {_xe_X: xS( i )=a} .  
Let Y(m, y) e JYf; then 

T_ 'Y(m, y) = {x: "c(Tx', _x '+ l) = m ,  _x~(- o% m) = y ( -  oo, m)} 

So, an atom of the partition VT=~T '~,~ is given by 

Y =  Y(m~,y,;s<<.t<~u) 

= {SeX: ' c (Tx ' ,  x t+') =m, ,  x ' ( - ~ ,  m , )=  y t ( - ~ ,  m,), s<~ t<~u} 

Note that the equality r(T_x',_x' + l ) = m ,  is equivalent to 
_x ' ( i )=_x '+ l ( i -1 )  for i > m , + l  and x ' ( m , + l ) # _ x ' + l ( m , ) .  Since A is a 
two-symbol set (we can take A = { -  1, 1 }), the last relation can be written 
as x ' ( m , +  1 )=  --xt+l(mt). 

Let L ( C ) = { Y e V , ~ s T _  ' ~ : Y c C } .  Define D = U r ~ L ( c )  Y. SinceD 
belongs to V,>~s_T ' S ,  it suffices for us to show the equality 
C = D(mod #v). Let 

K(i, s) = { Y(m,, y, ; t >~ s): m, < i - t + s for any t ~> s } 

We shall show that D ' =  Ur~,r(i.s)Y satisfies ( C \ D ) c D '  and # v ( D ' ) = 0 .  
This will finish the proof, since D c C. 

The inclusion (C\D)  c D' is equivalent to (_X\C) u D = (X\D' ) ;  so, we 
must prove that any Y= Y(m,, y,; t>~s)q~K(i, s) satisfies Y c _ X \ C  or 
Y c  C. Let us suppose Yr~ C#~b; we shall prove Y c  C. 

Take t o = i n f { t > ~ s : m , > ~ i - ( t - s ) } ;  then m t < i - t + s  for s<<.t<to 
and m,0 ~> i -  t o + s. The coordinate 

_x'~ - to + s) = y,o(i - to + s) 

is fixed. I f i - t o + s + l > m t 0  1+1,  we have 

x '~ ~ ( i - t  o + s + l ) = x ' ~  o + s ) = y , o ( i - t  o+s )  

In the other possible case i - t o + S +  1 =m,0_ 1 + 1 we have 

_x ~~ ~ ( i - t o + s +  l ) # _ x ' ~  
Then 

x ~~ l ( i - t o + S +  1)=  - y ~ o ( i - t o + S )  
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Let us define 

h(t 0, i -  to + S) = card { s ~< t~< to: i -  t + s = m, + 1 } 

which counts  the number  of times we change the sign of the symbol  
yto( i - to  + s) when we shift it f rom coordinate  t o to coordinate  s. A simple 

induct ion gives us 

xS(i) = ( _ 1 )h(,0.i-,0+~) y,o(i_ to + s) 

that  is, xS(i) is fixed in Y. Since there exists some point  _Ye Y ~  C, we have 
_Ys(i)= a, and then any _xe Y satisfies _xS(i) = a ,  so Y c  C. 

N o w  let us prove  # v ( D ' ) = 0 .  Let 

K(i,s, u ) =  {Y(m,,  y,;s<~t<~ u ) : m , < i - t + s  for s<<.t<<.u} 

The sequence 

D'(u) = U Y 
YE K(i, s, u) 

decreases to D '  as u -~  ~ .  So it suffices to prove  # v ( D ' ( u ) ) - - * . ~  O. We 
have 

D'(u)= {_x: z(T_x',_x'+ l) < i -  t + s, Vs<~ t <~ u} 

SO 

where 

[see after (6)].  

#v(D'(u)) = ,(x~, 

x u d x u + X ) ]  d~(_x ~) �9 '" ~ Q v ( _ ,  _ 

Mj(x)  = [ oo~<k<jX; (Tx) lw{Tx}  

I ] j  = i -  u + ~ Ri. Since Rj Let  Rj = supz~x Q v(z, M/(z));  then #v(D'(u)) <~ i 
decreases when j decreases, it suffices to show the inequali ty 
l i m j _  oo R j <  1 to obta in  the result. N o w  

Qv(z, Mj(z))= ~', Qv(x,X~(Tx))+voo 
o o < k < j  
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Let _c=inf{#[-c]: ceA} ,  8 = s u p { # [ c ] :  c e A }  (we have 0<_c~<i<  1). By 
using formula (7a) we get 

k < ~ j - - 1  r > ~ k + 2  

and if we develop this last term we arrive to the inequality 

Y v_r+ Z v-,  
: ~  < r < ~ j +  1 j +  1 ~ r <  oo 

The right-hand side converges to 0 when j decreases to - o o ;  hence, 
l imj~ o o R j = v ~ < l .  | 

Now we shall prove the independence property when p = 1 - p = �89 

I_emma 2. Let T be a (�89 �89 shift. Then the sequence of 
a-fields (T  'J'~: t e Z )  is #v-independent. 

Proof. We must show that for any s<u  in Z the sequence 
(T ';,@: s ~< t ~< u) is #v-independent. Let 

E, = E,(m,, qt, Yt(mr - qr, mr)) 

= {_x: z(Tx',  x t+ 1) = m,, x r ( m , -  qr, m,) = yr (m, -  qr, mt)} 

for m, eZ~{- -oo} ,q~>~- - l ,  yr(m,--qr, m , ) eA  u'+l [we take q , = - i  
when mr = - ~ ;  recall that qt = - 1  means yt(m,+ 1, mr) is void; thus, the 
last equality in the definition of E r is always satisfied]. Let E =  N~'=~ E,; 
then Lemma 2 will follow when we show #v(E)=F[~=s#v(Er) [for any 
choice of s < u and (E,: s~< t ~< u)]. 

Take the block C , =  [yr (m, -q , ,m , ) ]  (it is eventually the set X if 
qr = - 1). We have 

f + , #v(E,) = lc,(_x') Qv(5', X+m,(T_ x 1) d#(_ xr) 

Since #,(z) = �89 for any z e X [because T is the (!,2 �89 shift], we get 
Qv(z, X](Tz))  = S~, where 

Sk : E V-r 2(k + l)-r 
k + 2 ~ < r < o o  

for k e Z  and S 0o = Voo [we have used equality (7a)]. Then 
m t  

Pv(Et)=S.nfl2(C,)=S,., H #i(Y)=gmL 2-(q'+') 
i me - -  q t  

Now we shall write E in a suitable form in order to evaluate #v(E). 
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For any s<~t<~u such that q t r  - 1  and any m , -  q, <~ i <<. m, define 

O(t, i) = inf{s ~< t' ~< t: for any t' <<. t" <~ t we have i + t - t" > rnc, } 

[so we can shift the restriction yt(i)  from the coordinate t to the coordinate 
O(t, i)]. For m , - q , < ~  i <~rn, take O(s, i )=s .  The function 

(t, i) ~ gt(t, i )=  (O(t, i), i +  t -  O(t, i)) 

is one-to-one, so if we denote r / ( t )=card[gJ - l ({ t}  x Z) ]  (the number of 
restrictions such that their shifting to the left finishes in t), we get 

t /( t)= ~ (q~+ 1) 
t = s  t ~ s  

For any s < t < ~ u  we have i + t - O ( t ,  i)>mo(,,~) and, if O(t, i )>s ,  we 
have 

i + t - O ( t , i ) ~ m o o . i  ) 1 - 1  
Let 

h(t, i ) = c a r d { O ( t ,  i)<~t" <~t: i + t - t " = m c . +  1} 

be the number of times the restriction y,(i)  changes sign when shifted from 
t to O(t, i). Let s <<. t' <~ u. Now define the cylinder 

f ( t ' )  = {z ~ X: z(i + t - O(t, i)) = ( - 1 )  h(t ' i )  y(t,  i) 

for any (t, i )e  T - l ( { t  '} x Z ) }  

Define F ( u +  1)=X,  ~/(u+ 1)=0 .  For s < t < u  take 

G t +  l(_X t) = X+mt(T_x t)  ~ F(t + 1) 

From formula (7c) we get 

x' 2 r/(t + 1) Qv(_ , a ,+l(_X') )=Sm,  
Since 

E =  {x :_x ' eF ( s ) , _x '+ l eG ,+ l (_x ' ) f o rany  s < ~ t ~ u }  

we get 

# v(E)=  f l 1 F(s)(-X~')fG Q(x  s, d xS+ 1) 
s + l(x  s) 

= Sm, 2 -x'=s"~ ) #v(Et) .  
= t = s  

Then Lemma 2 is verified and the theorem follows. 1 
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Since T is a Bernoulli # v-automorphism, it is completely characterized 
by its entropy. We shall prove it is infinite for any Bernoulli shift T when 
v ~ < l :  

Proposition. Let T be a Bernoulli shift, and 

where (v,).~z,~{oo} is a probability vector such that %0< 1. Then the 
Kolmogorov-Sinai entropy of (X z, Nz ,  #v,  T_) is infinite: h~(_T)= oo. 

Proof. It is easy to see that for any Markov operator V we have 

where Hovtx.)(~ ) is the entropy of the space (X, ~ )  with respect to the 
measure Qv(x, ") defined on it. From (7c) it results that Qv(x, ") is non- 
atomic, so HQv(.,..)(~)= co for any x. Hence h~,v(T_ ) = oo. | 

Remark 1. Let (v(m))m>~l be a sequence of probability measures on 
Z u  {oo} such that: 

(a) Each one of them satisfies conditions (2a)-(2c). 

(b) They converge weakly to a measure supported by ~ ,  that is, 
v ~ ' ~ / ~  0 for any n e Z, v~m) ~ m ~  ~ 1. 

Let 

(m) 0,,) = V,, E UT v(m) ~z~{oo} 
be our canonical PMC processes [with T the (1, �89 shift]. Then 
(/~m~),,,~> 1 is a sequence of Bernoulli measures of infinite entropy on 
(X z, Nz )  converging weakly to the Bernoulli measure #ur, which has finite 
entropy equal to log 2. 

Romark 2. It is direct to show that the systems (X z, ~ z ,  #v, T_-L) 
and (X z, ~jz, t~v*, T) are isomorphic [in fact, the time-reversing function 
~ ( ( _ x ' ) , ~ z ) -  - '  

- (_x ),~z is the isomorphism; see Ref. 12]. Let T be the (�89 �89 
Bernoulli shift. Since (X  z, ~ z ,  l~v, T) is Bernoulli, it is isomorphic to its 
inverse, hence isomorphic to (X z, ~ z ,  t~v*, _T); while the dynamics of the 
Markov operators V and V* can be distinguished by the property of strong 
convergence to equilibrium. 
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Remark 3. After this manuscript was submitted, I received a private 
communication from Prof. Sheldon Goldstein, who extends the main result 
of this paper: 

Theorem. Let (X, ~ ,  #, T) be a Bernoulli shift and 

Then the shift (X z, ~z ,  # v, _T) is Bernoulli. 

Proof. Let ) ( =  (Z w { - ~ }) x X endowed with the product a-field 
= ~ ( Z  w { - ~ }) @ ~.  Define the following transition kernel: 

O((k, x), {n} • B ) =  v ~((E~'-~U~) l~) (x)  

It is easy to show that Q preserves f i = ~ |  where ~ (n )=v_  n. Then 
induces a ti-Markov operator V, Vl/n}x~(k, x ) =  Q((k, x), {n} x B)). Now 
consider the shift T on ()~z, 2~z,/~ 9). It is not hard to prove that the a-field 
generated by the atoms {{k} • 1 7 6  - 1)} is fi~-independent and 
generating, so the shift T is/~ g-Bernoulli. 

Now the projection 

r 2 Z ~ X Z 

(k',x'),~z~(x'),~z 

satisfies ~b/i~=#v and r Then (X z, ~z ,  ffv, T) is a factor of 
(2z,  2~z,/~p, ~). Since factors of Bernoulli shifts are also Bernoulli (see 
Ornstein(15)), we deduce the result. | 

The above proof, while short and elegant, does not provide an explicit 
#v-Bernoulli partition for a general Bernoulli measure # (as in the (�89 �89 
case), which remains an open problem. 
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